cua cà mau cua tươi sống cua cà mau bao nhiêu 1kg giá cua hôm nay giá cua cà mau hôm nay cua thịt cà mau cua biển cua biển cà mau cách luộc cua cà mau cua gạch cua gạch cà mau vựa cua cà mau lẩu cua cà mau giá cua thịt cà mau hôm nay giá cua gạch cà mau giá cua gạch cách hấp cua cà mau cua cốm cà mau cua hấp mua cua cà mau cua ca mau ban cua ca mau cua cà mau giá rẻ cua biển tươi cuaganic cua cua thịt cà mau cua gạch cà mau cua cà mau gần đây hải sản cà mau cua gạch son cua đầy gạch giá rẻ các loại cua ở việt nam các loại cua biển ở việt nam cua ngon cua giá rẻ cua gia re crab farming crab farming cua cà mau cua cà mau cua tươi sống cua tươi sống cua cà mau bao nhiêu 1kg giá cua hôm nay giá cua cà mau hôm nay cua thịt cà mau cua biển cua biển cà mau cách luộc cua cà mau cua gạch cua gạch cà mau vựa cua cà mau lẩu cua cà mau giá cua thịt cà mau hôm nay giá cua gạch cà mau giá cua gạch cách hấp cua cà mau cua cốm cà mau cua hấp mua cua cà mau cua ca mau ban cua ca mau cua cà mau giá rẻ cua biển tươi cuaganic cua cua thịt cà mau cua gạch cà mau cua cà mau gần đây hải sản cà mau cua gạch son cua đầy gạch giá rẻ các loại cua ở việt nam các loại cua biển ở việt nam cua ngon cua giá rẻ cua gia re crab farming crab farming cua cà mau
Skip to main content

This Google robot taught itself to walk, with no help whatsoever, in two hours

Do you remember that scene in Walt Disney’s Bambi where the titular fawn learns to stand up and walk under its own power? It’s a charming vignette in the movie, showcasing a skill that plenty of baby animals — from pigs to giraffe to, yes, deer — pick up within minutes of their birth. Over the first few hours of life, these animals rapidly refine their motor skills until they have full control over their own locomotion. Humans, who learn to stand holding onto things at around seven months and who begin walking at 15 months, are hopelessly sluggish by comparison.

Recommended Videos

Guess what the latest task that robots have beaten us at? In a new study carried out by researchers at Google, engineers have taught a quadruped Minitaur robot to walk by, well, not really having to teach it much at all. Rather, they’ve used a a type of goal-oriented artificial intelligence to make a four-legged robot learn how to walk forward, backward, and turn left and right entirely on its own. It was able to successfully teach itself to do this on three different terrains, including flat ground, a soft mattress, and a doormat with crevices.

“Legged robots can have great mobility because legs are essential to navigate unpaved roads and places designed for humans,” Jie Tan, principle investigator on the project and Google’s head of locomotion efforts, told Digital Trends. “We are interested in enabling legged robots to navigate our diverse and complex real-world environments, but it is difficult to manually engineer robotic controllers that can handle such diversity and complexity. Therefore it is important that robots be able to learn by themselves. This work is exciting because this is an early demonstration that, with our system, a legged robot can successfully learn to walk on its own.”

Positive reinforcement

Learning to Walk in the Real World with Minimal Human Effort

The technology at the root of this particular project is something called deep reinforcement learning, a specific approach to deep learning that’s inspired by behaviorist psychology and trial and error learning. Told to maximize a certain reward, software agents learn to take actions in an environment that will achieve those results in the most precise, efficient way possible. The power of reinforcement learning was famously demonstrated in 2013 when Google’s DeepMind released a paper showing how it had trained an A.I. to play classic Atari video games. This was achieved with no instruction other than the on-screen score and the approximately 30,000 pixels that made up each frame of the video games it was playing.

Video games, or at least simulations, are frequently used by robotics researchers, too. A simulation makes perfect sense in theory, since it allows roboticists to train their machine in a virtual world before going out into the real one. That saves robots from the inevitable pratfalls and wear-and-tear that it would undergo as it learns to carry out a specific task. As an analogy, imagine if all of your driving lessons were carried out using a driving simulator. The argument could be made that you would learn more quickly because you wouldn’t have to be so cautious about risking your physical safety or damaging your car (or someone else’s). You could also train more rapidly without having to wait for allocated lessons or for a licensed driver to be willing to take you out.

The problem with this is that, as anyone who has ever played a driving video game will know, it’s pretty darn hard to model the real world in a way that feels like, well, the real world. Instead, Google’s researchers began developing improved algorithms that allows their robot to learn more rapidly with fewer trials involved. Building on a previous piece of Google research published in 2018, their robot was able to learn to walk in just a couple of hours in this latest demonstration.

It’s also able to do this while emphasizing a more cautious, safer approach to learning, involving fewer falls. As a result, it minimizes the number of human interventions that need to be made to pick the robot up and dust it off every time it takes a tumble.

Building better robots

Learning to walk in two hours may not be quite deer levels of learning-to-walk efficiency, but it’s a far cry from engineers having to explicitly program how a robot is usually taught to maneuver. (And, as noted, it’s a whole lot better than human infants can manage in that kind of time frame!)

“Although many unsupervised learning or reinforcement learning algorithms have been demonstrated in simulation, applying them on real, legged robots turns out to be incredibly difficult,” Tan explained. “First, reinforcement learning is data-hungry, and collecting robot data is expensive. Our previous work has addressed this challenge. Second, training requires someone to spend a lot of time supervising the robot. If we need a person to monitor the robot and manually reset it every time it stumbles — hundreds or thousands of times — it’s going to take a lot of effort and a very long time to train the robot. The longer it takes, the more difficult it is to scale up the learning to many robots in many different environments.”

One day this research could help create more agile robots that are more rapidly able to adapt to a variety of terrains. “The potential applications are numerous,” Tan said. However, Tan stressed that this is “still early days, and there are many challenges that we still need to overcome.”

In keeping with the reinforcement learning theme, it’s certainly a reward that’s worth maximizing, though!

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
This startup wants to deepfake clone your voice and sell it to the highest bidder
veritone's marvel.ai

There’s a video that pops up periodically on my YouTube feed. It’s a conversation between rappers Snoop Dogg and 50 Cent bemoaning the fact that, compared to their generation, all modern hip-hop artists apparently sound the same. “When a person decides to be themselves, they offer something no-one else can be,” says 50 Cent. “Yeah, ‘cos once you be you -- who can be you but you?” Snoop responds.

Snoop Dogg impersonates today's rappers sound-alike flow

Read more
Algorithmic architecture: Should we let A.I. design buildings for us?
Generated Venice cities

Designs iterate over time. Architecture designed and built in 1921 won’t look the same as a building from 1971 or from 2021. Trends change, materials evolve, and issues like sustainability gain importance, among other factors. But what if this evolution wasn’t just about the types of buildings architects design, but was, in fact, key to how they design? That’s the promise of evolutionary algorithms as a design tool.

While designers have long since used tools like Computer Aided Design (CAD) to help conceptualize projects, proponents of generative design want to go several steps further. They want to use algorithms that mimic evolutionary processes inside a computer to help design buildings from the ground up. And, at least when it comes to houses, the results are pretty darn interesting.
Generative design
Celestino Soddu has been working with evolutionary algorithms for longer than most people working today have been using computers. A contemporary Italian architect and designer now in his mid-70s, Soddu became interested in the technology’s potential impact on design back in the days of the Apple II. What interested him was the potential for endlessly riffing on a theme. Or as Soddu, who is also professor of generative design at the Polytechnic University of Milan in Italy, told Digital Trends, he liked the idea of “opening the door to endless variation.”

Read more
This tech was science fiction 20 years ago. Now it’s reality
Hyundai Wearable Exoskeleton, assistive tech

Twenty years really isn’t all that long. A couple of decades ago, kids were reading Harry Potter books, Pixar movies were all the rage, and Microsoft’s Xbox and Sony’s PlayStation were battling it out for video game supremacy. That doesn’t sound all that different from 2021.

But technology has come a long way in that time. Not only is today’s tech far more powerful than it was 20 years ago, but a lot of the gadgets we thought of as science fiction have become part of our lives. Heck, in some cases, this technology has become so ubiquitous that we don’t even think about it as being cutting-edge tech.

Read more