cua cà mau cua tươi sống cua cà mau bao nhiêu 1kg giá cua hôm nay giá cua cà mau hôm nay cua thịt cà mau cua biển cua biển cà mau cách luộc cua cà mau cua gạch cua gạch cà mau vựa cua cà mau lẩu cua cà mau giá cua thịt cà mau hôm nay giá cua gạch cà mau giá cua gạch cách hấp cua cà mau cua cốm cà mau cua hấp mua cua cà mau cua ca mau ban cua ca mau cua cà mau giá rẻ cua biển tươi cuaganic cua cua thịt cà mau cua gạch cà mau cua cà mau gần đây hải sản cà mau cua gạch son cua đầy gạch giá rẻ các loại cua ở việt nam các loại cua biển ở việt nam cua ngon cua giá rẻ cua gia re crab farming crab farming cua cà mau cua cà mau cua tươi sống cua tươi sống cua cà mau bao nhiêu 1kg giá cua hôm nay giá cua cà mau hôm nay cua thịt cà mau cua biển cua biển cà mau cách luộc cua cà mau cua gạch cua gạch cà mau vựa cua cà mau lẩu cua cà mau giá cua thịt cà mau hôm nay giá cua gạch cà mau giá cua gạch cách hấp cua cà mau cua cốm cà mau cua hấp mua cua cà mau cua ca mau ban cua ca mau cua cà mau giá rẻ cua biển tươi cuaganic cua cua thịt cà mau cua gạch cà mau cua cà mau gần đây hải sản cà mau cua gạch son cua đầy gạch giá rẻ các loại cua ở việt nam các loại cua biển ở việt nam cua ngon cua giá rẻ cua gia re crab farming crab farming cua cà mau
Skip to main content

Researchers activate graphene’s hidden superconductor abilities

Graphene
Image used with permission by copyright holder
If metals were students, then graphene would be the annoyingly gifted kid at the front of the class, answering every question perfectly while everyone else looks on with a combination of envy and annoyance. A miracle material with seemingly unlimited applications, graphene is ultrastrong, ultrathin — and can potentially do everything from help detect cells to letting us take better photos.

Now, like any overachiever worth its electrons, it’s got another confirmed skill: The long-speculated-upon ability to work as a superconductor, meaning that electrical current flow through it with zero resistance.

Recommended Videos

In a new paper, published in the journal Nature Communications, researchers at the United Kingdom’s Cambridge University describe how graphene’s superconducting abilities can be activated by coupling it with a material called praseodymium cerium copper oxide (PCCO).

This is the first time researchers have managed to make graphene a superconductor without having to alter it, such as by doping it with calcium atoms as in a previous study. Although the graphene was coupled with PCCO for this experiment, the researchers were able to clearly distinguish between the superconductivity of PCCO and that of the graphene, due to the “spin states” of electrons. In the case of PCCO, this spin state is what is referred to as a “d-wave state,” while investigators on the project think graphene may show a rare “p-wave” form.

Superconductors have long been used to generate large magnetic fields for devices like MRI scanners. Long term, though, they offer an even more exciting possibility: Unlimited energy. That’s because they don’t need to be constantly resupplied with current.

“One day, the dream is to make your computer or your iPhone work without dissipating energy,” junior research fellow Angelo Di Bernardo, one of the paper’s authors, told Digital Trends. “You’ll just charge it once and then you can forget about having to charge it again its entire lifetime.”

Right now, the challenge is that such superconductors only work at extremely low temperatures, way below zero. Although the PCCO material used in this experiment was also cooled to a very low temperature, the hope is that in future it will be possible to choose alternate materials that can be closer to room temperature.

Dr. Di Bernardo described the work to us as “a fundamental discovery, rather than something that will have practical application in the short term.” However, he said that it could offer a slew of possible use-cases, most notably to help power quantum computers.

There’s still plenty of work that needs to be done to build on this discovery, but it is hoped that this breakthrough will represent a major turning point in our ability to develop molecular electronics devices with novel functionalities, based on superconducting graphene.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Trade group says EV tax incentive helps U.S. industry compete versus China
ev group support tax incentive 201 seer credit eligibility

The Zero Emission Transportation Association (ZETA), a trade group with members including the likes of Tesla, Waymo, Rivian, and Uber, is coming out in support of tax incentives for both the production and sale of electric vehicles (EVs).

Domestic manufacturers of EVs and their components, such as batteries, have received tax incentives that have driven job opportunities in states like Ohio, Kentucky, Michigan, and Georgia, the group says.

Read more
Ford boosts year-end discounts on 2024 Lightning, Mach-E Models
ford discounts lightning mach e 24 frd mch 51368 ao3a1676 edit 14a676

We’re officially into the traditional year-end sales period for automakers. That means big discounts are on the way, as both manufacturers and dealerships want to get rid of unsold inventory to make room for next year’s models.

This season, Ford has decided to boost incentives on its bestselling electric vehicles, the 2024 F-150 Lightning and Mustang Mach-E models.

Read more
Eaton, Treehouse to boost home capacity for EV charging, energy storage
eaton treehouse ev charging news releases

Power-management firm Eaton likes to point out that when it launched in 1911, it invested in a new idea -- the very first gear-driven truck axle -- just at a time when both transportation and power management were on the cusp of dramatic change.
More than 113 years later, Eaton is again seeking to lead innovation in the current energy transition.
The power-management firm just signed a deal with Treehouse, an AI, software-enabled installation platform for electrification projects. The end goal: accelerating the electrification of homes for electric-vehicle (EV) charging, energy storage, or heat pumps, while seeking more efficiency and cost savings.
“At Eaton, we’re all-in on the energy transition and we’re making it happen at scale by delivering breakout technologies and industry collaborations needed to delight customers and make it more accessible and affordable,” says Paul Ryan, general manager of Connected Solutions and EV Charging at Eaton.
The partnership will ensure consumers are provided with accurate and fast pricing, as well as access to licensed electricians to deliver code-compliant installations, the companies say.
The collaboration also integrates into Eaton’s “Home as a Grid” approach, which supports the two-way flow of electricity, enabling homeowners to produce and consume renewable energy when they need it, Eaton says.
“For more than a century, power has flowed in one direction—from centralized power plants into homes,” the company says. “Today, there’s a new reality thanks to solar, electric-vehicle charging, energy storage, digitalization, and more.”
Projects to change homes and EVs into energy hubs have multiplied recently.
Last month, Nissan joined ChargeScape, a vehicle-to-grid (V2G) venture that is already backed by BMW, Ford, and Honda. ChargeScape’s software wirelessly connects EVs to power grids and utility companies, enabling consumers to receive financial incentives for temporarily pausing charging during periods of high demand. Eventually, consumers should also be able to sell the energy stored in their EVs’ battery back to the power grid.
In August, GM announced that V2G technology will become standard in all its model year 2026 models. And Tesla CEO Elon Musk has hinted that Tesla could introduce V2G technology for its vehicles in 2025.

Read more