cua cà mau cua tươi sống cua cà mau bao nhiêu 1kg giá cua hôm nay giá cua cà mau hôm nay cua thịt cà mau cua biển cua biển cà mau cách luộc cua cà mau cua gạch cua gạch cà mau vựa cua cà mau lẩu cua cà mau giá cua thịt cà mau hôm nay giá cua gạch cà mau giá cua gạch cách hấp cua cà mau cua cốm cà mau cua hấp mua cua cà mau cua ca mau ban cua ca mau cua cà mau giá rẻ cua biển tươi cuaganic cua cua thịt cà mau cua gạch cà mau cua cà mau gần đây hải sản cà mau cua gạch son cua đầy gạch giá rẻ các loại cua ở việt nam các loại cua biển ở việt nam cua ngon cua giá rẻ cua gia re crab farming crab farming cua cà mau cua cà mau cua tươi sống cua tươi sống cua cà mau bao nhiêu 1kg giá cua hôm nay giá cua cà mau hôm nay cua thịt cà mau cua biển cua biển cà mau cách luộc cua cà mau cua gạch cua gạch cà mau vựa cua cà mau lẩu cua cà mau giá cua thịt cà mau hôm nay giá cua gạch cà mau giá cua gạch cách hấp cua cà mau cua cốm cà mau cua hấp mua cua cà mau cua ca mau ban cua ca mau cua cà mau giá rẻ cua biển tươi cuaganic cua cua thịt cà mau cua gạch cà mau cua cà mau gần đây hải sản cà mau cua gạch son cua đầy gạch giá rẻ các loại cua ở việt nam các loại cua biển ở việt nam cua ngon cua giá rẻ cua gia re crab farming crab farming cua cà mau
Skip to main content

Genetically modified plants could help get to the root of climate change

Gene identified that will help develop plants to fight climate change

There’s not going to be one singular solution to solve the problem of climate change. In reality, it’s going to take a multi-pronged approach encapsulating everything from reducing our individual carbon footprints to potentially more drastic solutions such as geoengineering. Researchers at the Salk Institute for Biological Studies in La Jolla, California have another approach to add to the pile — and it’s one that involves genetic modification.

Recommended Videos

Salk researchers have been investigating ways to engineer plants so that they grow with more robust and deeper roots that are capable of storing increased amounts of carbon underground for longer; thereby reducing CO2 in the atmosphere. This is based on their discovery of a gene which dictates the depth to which plant roots grow in soil.

“We are very excited about our recent finding, because we have found a gene — Exocyst70A3 — and its variants that can change a shallow root system architecture, [in which] the roots grow closer to the surface of the soil, to a deeper root system architecture, [where] the roots grow deeper into the soil,” Wolfgang Busch, an Associate Professor in Salk’s Plant Molecular and Cellular Biology Laboratory, told Digital Trends. “We also have understood to a great extent how this gene works. It changes the flow of the plant hormone auxin through the root tip. That way the roots are not as swift to sense if they don’t grow downwards. Importantly, this gene seems to only specifically change root system architecture and no other property of the plant — it is therefore a precision tool.”

Making the work particularly promising is the fact that the Exocyst70A3 gene has very closely related genes in all plants. This means that this research could theoretically work with every crop plant in existence. To further develop the project, the Salk initiative will receive more than $35 million from a number of organizations and individuals.

“The next stage for this project is to translate this to crop plants that we would like to enhance in terms of root depth,” Busch continued. “Other work that we are starting is to look for other genes and their variants that increase root depth in a similar way. Having multiple genes in hand to work with to tune root system architecture will increase our ability to get to custom-tailored root systems.”

A paper describing the work, titled “Root System Depth in Arabidopsis Is Shaped by Exocyst70A3 via the Dynamic Modulation of Auxin Transport,” was recently published in the journal Cell.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Polar bears could disappear from most of the planet by 2100
cecilia bitz sea ice polar bear unsplash

The majority of polar bears could disappear by the year 2100 if the world continues emitting greenhouse gases at the current rate, according to an alarming study released Monday.

The new study in Nature Climate Change projects that polar bear populations will suffer declines in reproduction by 2040 if emissions continue unabated. With some mitigation in greenhouse gas release, that date could be pushed back to 2080.

Read more
What’s in Joe Biden’s $2 trillion climate plan?
biden takes aim at facebooks moderation policies podium getty

Biden Plan for a Clean Energy Revolution & Environmental Justice | Joe Biden for President

Joe Biden’s campaign is proposing a plan to spend $2 trillion on clean-energy initiatives over a four-year span.

Read more
Global temperatures could reach the Paris Accords threshold soon
best drone photos melting ice

The World Meteorological Organization (WMO) has predicted that global temperatures may reach the threshold established in the Paris Climate Accords at least once within the next five years, according to a new forecast.

Countries in the 2015 Paris Agreement are working to limit the global temperature rise to 1.5 degrees Celsius (2.7 degrees Fahrenheit) above pre-industrial levels. The WMO says there’s a 20% chance at least one year between 2020 and 2024 could hit that marker. The warmest years on record have occurred since 2015, and 2020 may continue that trend.

Read more