cua cà mau cua tươi sống cua cà mau bao nhiêu 1kg giá cua hôm nay giá cua cà mau hôm nay cua thịt cà mau cua biển cua biển cà mau cách luộc cua cà mau cua gạch cua gạch cà mau vựa cua cà mau lẩu cua cà mau giá cua thịt cà mau hôm nay giá cua gạch cà mau giá cua gạch cách hấp cua cà mau cua cốm cà mau cua hấp mua cua cà mau cua ca mau ban cua ca mau cua cà mau giá rẻ cua biển tươi cuaganic cua cua thịt cà mau cua gạch cà mau cua cà mau gần đây hải sản cà mau cua gạch son cua đầy gạch giá rẻ các loại cua ở việt nam các loại cua biển ở việt nam cua ngon cua giá rẻ cua gia re crab farming crab farming cua cà mau cua cà mau cua tươi sống cua tươi sống cua cà mau bao nhiêu 1kg giá cua hôm nay giá cua cà mau hôm nay cua thịt cà mau cua biển cua biển cà mau cách luộc cua cà mau cua gạch cua gạch cà mau vựa cua cà mau lẩu cua cà mau giá cua thịt cà mau hôm nay giá cua gạch cà mau giá cua gạch cách hấp cua cà mau cua cốm cà mau cua hấp mua cua cà mau cua ca mau ban cua ca mau cua cà mau giá rẻ cua biển tươi cuaganic cua cua thịt cà mau cua gạch cà mau cua cà mau gần đây hải sản cà mau cua gạch son cua đầy gạch giá rẻ các loại cua ở việt nam các loại cua biển ở việt nam cua ngon cua giá rẻ cua gia re crab farming crab farming cua cà mau
Skip to main content

What will happen when spacecraft DART crashes into an asteroid

NASA’s DART spacecraft was launched last November on a mission right out of a Hollywood movie plot: to intercept an asteroid headed toward Earth and attempt to knock it off its course. Fortunately, asteroid Dimorphos isn’t really on a collision course with our planet, though it will come close enough to be classified as a near-Earth object, but the idea is to test out the system in case we ever do find an asteroid threatening a collision with Earth.

DART will attempt to nudge the asteroid away from its current trajectory by crashing into it. No one is quite sure exactly what will happen when the spacecraft hits the asteroid, so researchers from the University of Bern in Switzerland recently simulated the impact using computer modeling.

Illustration of NASA’s DART spacecraft and the Italian Space Agency’s (ASI) LICIACube prior to impact at the Didymos binary system.
Illustration of NASA’s DART spacecraft and the Italian Space Agency’s (ASI) LICIACube prior to impact at the Didymos binary system. NASA/Johns Hopkins, APL/Steve Gribben

The researchers found that unlike many assumptions that the spacecraft would leave a small impact crater in the asteroid, it could cause significant damage to the asteroid. The way it will break up depends on what the asteroid is made of, and previous assumptions had been that asteroids have a fairly solid interior. But recent asteroid sampling missions have suggested some asteroids could be more crumbly inside.

Recommended Videos

“Contrary to what one might imagine when picturing an asteroid, direct evidence from space missions like the Japanese space agency’s (JAXA) Hayabusa2 probe demonstrate that asteroids can have a very loose internal structure — similar to a pile of rubble — that is held together by gravitational interactions and small cohesive forces,” said the lead researcher, Sabina Raducan.

This means that instead of an impact crater 160 meters wide, the impact of the DART spacecraft could deform the asteroid completely and leave it almost unrecognizable. To model the impact, the researchers considered factors like how shock waves would move through the asteroid and how the material in the asteroid would be compacted by the force of the impact, which is all affected by the asteroid’s internal structure.

“One of the reasons that this scenario of a loose internal structure has so far not been thoroughly studied is that the necessary methods were not available,” Raducan said. “Such impact conditions cannot be recreated in laboratory experiments and the relatively long and complex process of crater formation following such an impact — a matter of hours in the case of DART – made it impossible to realistically simulate these impact processes up to now.”

The research is published in The Planetary Science Journal.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
An old NASA spacecraft will crash to Earth on Wednesday
NASA's RHESSI spacecraft.

A retired NASA spacecraft will reenter Earth’s atmosphere on Wednesday, with some parts of the vehicle expected to crash to the planet's surface.

While most of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) spacecraft is expected to burn up as it enters the atmosphere at high speed, some parts of the 660-pound (300-kilogram) machine are likely to survive the descent.

Read more
What the JUICE spacecraft is hoping to learn about Jupiter’s icy moons
Artist's impression of the JUICE spacecraft exploring Jupiter and its giant moon Ganymede.

Tomorrow will see the launch of the JUICE spacecraft, which will travel to the Jupiter system to investigate several of the moons there. The Jupiter Icy Moons Explorer, from the European Space Agency (ESA), will investigate three of Jupiter's biggest moons, Europa, Ganymede, and Callisto, and will discover whether these distant, icy worlds could be habitable.

These moons could be potentially habitable even though they are very far from the sun as they are thought to host oceans of liquid water beneath thick, icy crusts. Evidence from previous missions which visited or passed by the Jupiter system has shown what appear to be plumes of water erupting from the surface of Europa, giving strong evidence that there may be a whole watery world beneath 10 to 15 miles of ice.

Read more
Scientists observe the aftermath of a spacecraft crashing into asteroid
This artist’s illustration shows the ejection of a cloud of debris after NASA’s DART spacecraft collided with the asteroid Dimorphos. The image was created with the help of the close-up photographs of Dimorphos that the DRACO camera on the DART spacecraft took right before the impact. The DART spacecraft collided with Dimorphos at a speed of over 6 kilometres per second (about 22 000 kilometres per hour). After the impact several telescopes observed the evolution of the cloud of debris, including ESO’s Very Large Telescope.

When NASA deliberately crashed a spacecraft into an asteroid last year, it wasn't only a thrilling test of planetary defense. It was also a unique opportunity for scientists to observe an asteroid system and see the effects of the crash, letting them learn more about what asteroids are composed of. Earlier this month, images of the impact captured by the Hubble Space Telescope were released, and now we can see the impact from another view, captured by the European Southern Observatory's Very Large Telescope (ESO'S VLT).

The Very Large Telescope is a ground-based set of four telescopes located in Chile, which were able to see the aftermath following the DART spacecraft impacting the asteroid Dimorphos. The images show the cloud of debris thrown up by the impact, called the ejecta, between the time just before the impact on 26 September 2022 all the way through to a month later on October 25. Through this time, the cloud developed clumps and spirals and settled into a long tail formed by radiation from the sun.

Read more