cua cà mau cua tươi sống cua cà mau bao nhiêu 1kg giá cua hôm nay giá cua cà mau hôm nay cua thịt cà mau cua biển cua biển cà mau cách luộc cua cà mau cua gạch cua gạch cà mau vựa cua cà mau lẩu cua cà mau giá cua thịt cà mau hôm nay giá cua gạch cà mau giá cua gạch cách hấp cua cà mau cua cốm cà mau cua hấp mua cua cà mau cua ca mau ban cua ca mau cua cà mau giá rẻ cua biển tươi cuaganic cua cua thịt cà mau cua gạch cà mau cua cà mau gần đây hải sản cà mau cua gạch son cua đầy gạch giá rẻ các loại cua ở việt nam các loại cua biển ở việt nam cua ngon cua giá rẻ cua gia re crab farming crab farming cua cà mau cua cà mau cua tươi sống cua tươi sống cua cà mau bao nhiêu 1kg giá cua hôm nay giá cua cà mau hôm nay cua thịt cà mau cua biển cua biển cà mau cách luộc cua cà mau cua gạch cua gạch cà mau vựa cua cà mau lẩu cua cà mau giá cua thịt cà mau hôm nay giá cua gạch cà mau giá cua gạch cách hấp cua cà mau cua cốm cà mau cua hấp mua cua cà mau cua ca mau ban cua ca mau cua cà mau giá rẻ cua biển tươi cuaganic cua cua thịt cà mau cua gạch cà mau cua cà mau gần đây hải sản cà mau cua gạch son cua đầy gạch giá rẻ các loại cua ở việt nam các loại cua biển ở việt nam cua ngon cua giá rẻ cua gia re crab farming crab farming cua cà mau
Skip to main content

Get out the scrapers: Euclid space telescope is getting deiced

If you thought it was annoying to deice your car in the winter, then spare a thought for the engineers whose job it is to deice telescopes in space. The European Space Agency’s (ESA) Euclid space telescope is currently undergoing a deicing procedure to remove a few layers of water ice that are less than a nanometer thick but enough to impede the telescope’s highly accurate measurements.

Artist's impression of the Euclid mission in space.
Artist’s impression of the Euclid mission in space. ESA. Acknowledgement: Work performed by ATG under contract for ESA

It’s not uncommon for ice to form on space telescopes, as small amounts of water get into the telescope from the air while they are constructed on Earth. When they are launched into space, this water is gradually released and freezes in the cold environment, forming a layer of ice. This isn’t often a big problem, but as Euclid is studying dark matter and dark energy, it needs to take extremely sensitive measurements, and the ice is getting in the way.

Recommended Videos

This sensitivity is why engineers can’t simply whack on Euclid’s heaters to melt the ice but rather have to approach the issue carefully.

“Most other space missions don’t have such demanding requirements on ‘thermo-optical stability’ as Euclid,” explained Andreas Rudolph, Euclid Flight Director at ESA’s mission control, in a statement. “To fulfill Euclid’s scientific goals of making a 3D map of the Universe by observing billions of galaxies out to 10 billion light-years, across more than a third of the sky, means we have to keep the mission incredibly stable – and that includes its temperature. Switching on the heaters in the payload module therefore needs to be done with extreme care.”

To tackle the issue, the team is finding out exactly where the ice is located and plotting how it will impact measurements in the future if it continues to accumulate. Then, they can try various approaches to heating, such as gradually increasing the temperature of the spacecraft as a whole or the more complex operation of heating up only certain parts of it.

By moving carefully now, the team hopes to be ready for the future as small amounts of water continue to be released and freeze.

“Once we have isolated the affected area, the hope is that we can then simply warm up this isolated part of the spacecraft in the future as needed,” said Mischa Schirmer, calibration scientist for the Euclid consortium, who is working on the plan for deicing. “What we are doing is very complex and fine-grained, so that we can save valuable time in the future – I’m extremely excited to find out just where this water ice is accumulating, and how well our plan will work.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
A SpaceX Crew Dragon is doing a shuffle at the ISS — here’s how to watch
The SpaceX Dragon spacecraft carrying NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov approaches the International Space Station as it orbits 259 miles above Oregon.

This week will see a special maneuver at the International Space Station (ISS) as a SpaceX Crew Dragon takes one of the tiniest flights ever, hopping just a few meters over from one port of the station to another. And NASA will live stream the event, so you'll be able to watch the spacecraft take this short flight as it happens.

The changeover is necessary to make space for another SpaceX craft that will arrive on Monday, October 4. But this new arrival won't carry any crew as it is a cargo craft, part of the 31st commercial resupply services mission by SpaceX. This new arrival will dock at the forward-facing port on the Space Station's Harmony module, as it is easiest for craft to dock there than on the space-facing side. But the Crew Dragon is currently occupying this port, so it needs to undock, move to the other space-facing port, and redock there.

Read more
A SpaceX Crew Dragon spacecraft has set a new record
SpaceX's Crew Dragon spacecraft.

SpaceX’s Crew-8 members are finally on their way home after spending nearly eight months at the International Space Station (ISS).

The crew members were supposed to depart the ISS several weeks ago, but poor weather conditions at the splashdown site off the coast of Florida prompted mission planners to delay the homecoming. Prior to that, delays to departure were caused by measures to deal with Boeing’s troubled Starliner spacecraft, which was docked at the station over the summer.

Read more
Watch SpaceX’s Starship splashdown in the Indian Ocean at end of fifth test
SpaceX's Starship reentering Earth's atmosphere.

SpaceX’s Super Heavy rocket was the star of the show during last week’s test flight when it was successfully caught by the launch tower’s giant mechanical arms upon the first attempt.

Minutes earlier, the Super Heavy booster had deployed the upper-stage Starship spacecraft to orbit as part of the fifth test flight of the world’s most powerful rocket.

Read more