cua cà mau cua tươi sống cua cà mau bao nhiêu 1kg giá cua hôm nay giá cua cà mau hôm nay cua thịt cà mau cua biển cua biển cà mau cách luộc cua cà mau cua gạch cua gạch cà mau vựa cua cà mau lẩu cua cà mau giá cua thịt cà mau hôm nay giá cua gạch cà mau giá cua gạch cách hấp cua cà mau cua cốm cà mau cua hấp mua cua cà mau cua ca mau ban cua ca mau cua cà mau giá rẻ cua biển tươi cuaganic cua cua thịt cà mau cua gạch cà mau cua cà mau gần đây hải sản cà mau cua gạch son cua đầy gạch giá rẻ các loại cua ở việt nam các loại cua biển ở việt nam cua ngon cua giá rẻ cua gia re crab farming crab farming cua cà mau cua cà mau cua tươi sống cua tươi sống cua cà mau bao nhiêu 1kg giá cua hôm nay giá cua cà mau hôm nay cua thịt cà mau cua biển cua biển cà mau cách luộc cua cà mau cua gạch cua gạch cà mau vựa cua cà mau lẩu cua cà mau giá cua thịt cà mau hôm nay giá cua gạch cà mau giá cua gạch cách hấp cua cà mau cua cốm cà mau cua hấp mua cua cà mau cua ca mau ban cua ca mau cua cà mau giá rẻ cua biển tươi cuaganic cua cua thịt cà mau cua gạch cà mau cua cà mau gần đây hải sản cà mau cua gạch son cua đầy gạch giá rẻ các loại cua ở việt nam các loại cua biển ở việt nam cua ngon cua giá rẻ cua gia re crab farming crab farming cua cà mau
Skip to main content

Hubble captures a galaxy distorted by gravitational lensing

A recently released image taken by the Hubble Space Telescope shows a distant galaxy that has been warped and distorted by a phenomenon called gravitational lensing. This phenomenon allows scientists to infer information about very distant objects and is used in the discovery of exoplanets.

The galaxy pictured is called LRG-3-817 and is also known as SDSS J090122.37+181432.3. If you look just to the left of the center of the image, you can see what looks like a smudge in an arc shape. This is the gravitational lensing effect.

This NASA/ESA Hubble Space Telescope image features the galaxy LRG-3-817, also known as SDSS J090122.37+181432.3. The galaxy, its image distorted by the effects of gravitational lensing, appears as a long arc to the left of the central galaxy cluster.
This NASA/ESA Hubble Space Telescope image features the galaxy LRG-3-817, also known as SDSS J090122.37+181432.3. The galaxy, its image distorted by the effects of gravitational lensing, appears as a long arc to the left of the central galaxy cluster. ESA/Hubble & NASA, S. Allam et al.

Gravitational lensing occurs when a telescope like Hubble is pointed at a distant target like this galaxy, and a large object such as a cluster of galaxies passes between the telescope and its target. The gravity of this intermediate object bends the light coming from the distant object and acts like a magnifying glass, temporarily making the light from the distant object brighter.

Recommended Videos

The effect might look like a mistake or a distortion in the data, but in fact, it’s an incredibly useful phenomenon. As the Hubble scientists write, “Strong gravitational lenses provide an opportunity for studying properties of distant galaxies, since Hubble can resolve details within the multiple arcs that are one of the main results of gravitational lensing. An important consequence of lensing distortion is magnification, allowing us to observe objects that would otherwise be too far away and too faint to be seen. Hubble makes use of this magnification effect to study objects beyond the sensitivity of its 2.4-meter-diameter (almost 8-foot) primary mirror, showing us the most distant galaxies humanity has ever encountered.”

This means that researchers can more easily study distant galaxies, as they are normally very faint but when they are lensed they become brighter. This same technique can be used on a smaller scale in a process called gravitational microlensing, which is used to identify exoplanets. When an exoplanet is in orbit around a star that passes in front of another star, it can affect the brightness of the distant star. By observing the fluctuations in brightness researchers can spot the exoplanet and infer information about it like its mass.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Euclid space telescope captures stunning images of far-off galaxies
This image is released as part of the Early Release Observations from ESA’s Euclid space mission. All data from these initial observations are made public on 23 May 2024 – including a handful of unprecedented new views of the nearby Universe, this being one. This breathtaking image features Messier 78 (the central and brightest region), a vibrant nursery of star formation enveloped in a shroud of interstellar dust. This image is unprecedented – it is the first shot of this young star-forming region at this width and depth.

This image is released as part of the Early Release Observations from ESA’s Euclid space mission. This breathtaking image features Messier 78 (the central and brightest region), a vibrant nursery of star formation enveloped in a shroud of interstellar dust. This image is unprecedented, as it is the first shot of this young star-forming region at this width and depth. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi

New images from the European Space Agency (ESA)'s Euclid telescope show a gorgeous range of cosmic objects, from bustling stellar nurseries to enormous galaxy clusters. The first science data from the telescope has also been released, showing how the telescope will contribute to the study of dark matter and dark energy.

Read more
Hubble catches a baby star pulsating in a triple star system
This NASA Hubble Space Telescope image captures a triple-star star system.

This NASA Hubble Space Telescope image shows a triple-star star system. NASA, ESA, G. Duchene (Universite de Grenoble I); Image Processing: Gladys Kober (NASA/Catholic University of America)

A gorgeous new image from the Hubble Space Telescope shows a triple star system, where three stars are working in tandem to create a reflection nebula. The trio of stars are located 550 light-years away, and include one particular star, HP Tau, that is like a younger version of our sun and will eventually grow up to be a similar hydrogen-fueled star in millions of years' time.

Read more
Celebrate Hubble’s 34th birthday with this gorgeous nebula image
In celebration of the 34th anniversary of the launch of NASA’s legendary Hubble Space Telescope, astronomers took a snapshot of the Little Dumbbell Nebula, also known as Messier 76, or M76, located 3,400 light-years away in the northern circumpolar constellation Perseus. The name 'Little Dumbbell' comes from its shape that is a two-lobed structure of colorful, mottled, glowing gases resembling a balloon that’s been pinched around a middle waist. Like an inflating balloon, the lobes are expanding into space from a dying star seen as a white dot in the center. Blistering ultraviolet radiation from the super-hot star is causing the gases to glow. The red color is from nitrogen, and blue is from oxygen.

Tomorrow, April 24, marks the 34th anniversary of the launch of the Hubble Space Telescope. For more than three decades, this venerable old telescope has been peering out into space, observing stars, galaxies, and nebulae to understand more about the universe we live in. To celebrate this birthday, Hubble scientists have shared a new image showing the striking Little Dumbbell Nebula, also known as Messier 76, which is located 3,400 light-years away.

In celebration of the 34th anniversary of the launch of NASA’s legendary Hubble Space Telescope, astronomers took a snapshot of the Little Dumbbell Nebula, also known as Messier 76, or M76, located 3,400 light-years away in the northern circumpolar constellation Perseus. NASA, ESA, STScI

Read more