cua cà mau cua tươi sống cua cà mau bao nhiêu 1kg giá cua hôm nay giá cua cà mau hôm nay cua thịt cà mau cua biển cua biển cà mau cách luộc cua cà mau cua gạch cua gạch cà mau vựa cua cà mau lẩu cua cà mau giá cua thịt cà mau hôm nay giá cua gạch cà mau giá cua gạch cách hấp cua cà mau cua cốm cà mau cua hấp mua cua cà mau cua ca mau ban cua ca mau cua cà mau giá rẻ cua biển tươi cuaganic cua cua thịt cà mau cua gạch cà mau cua cà mau gần đây hải sản cà mau cua gạch son cua đầy gạch giá rẻ các loại cua ở việt nam các loại cua biển ở việt nam cua ngon cua giá rẻ cua gia re crab farming crab farming cua cà mau cua cà mau cua tươi sống cua tươi sống cua cà mau bao nhiêu 1kg giá cua hôm nay giá cua cà mau hôm nay cua thịt cà mau cua biển cua biển cà mau cách luộc cua cà mau cua gạch cua gạch cà mau vựa cua cà mau lẩu cua cà mau giá cua thịt cà mau hôm nay giá cua gạch cà mau giá cua gạch cách hấp cua cà mau cua cốm cà mau cua hấp mua cua cà mau cua ca mau ban cua ca mau cua cà mau giá rẻ cua biển tươi cuaganic cua cua thịt cà mau cua gạch cà mau cua cà mau gần đây hải sản cà mau cua gạch son cua đầy gạch giá rẻ các loại cua ở việt nam các loại cua biển ở việt nam cua ngon cua giá rẻ cua gia re crab farming crab farming cua cà mau
Skip to main content

See the polar moon sites where NASA plans to land its astronauts

An artist’s concept of an Artemis astronaut deploying an instrument on the lunar surface.
An artist’s concept of an Artemis astronaut deploying an instrument on the lunar surface. NASA

NASA has updated its list of potential landing sites for the next human visit to the moon, which is planned for 2026. The Artemis III mission will see the first crewed lunar landing since the Apollo era, and the plan is for astronauts to explore the moon’s South Pole region where there is thought to be water ice on the lunar surface.

NASA shared a list of 13 candidate landing locations for Artemis III in 2022, but has now updated its list to nine candidates. Some of these were on the list previously, while others have been added such as the Mons Mouton mountain and plateau, which is particularly interesting to scientists because the height of the mountain means that there are permanently shadowed regions nearby. These places, where sunlight never touches, are particularly good candidates when it comes to looking for water ice.

Recommended Videos

“The Moon’s South Pole is a completely different environment than where we landed during the Apollo missions,” said Sarah Noble, Artemis lunar science lead at NASA Headquarters, in a statement. “It offers access to some of the moon’s oldest terrain, as well as cold, shadowed regions that may contain water and other compounds. Any of these landing regions will enable us to do amazing science and make new discoveries.”

This image shows nine candidate landing regions for NASA’s Artemis III mission, with each region containing multiple potential sites for the first crewed landing on the Moon in more than 50 years. The background image of the lunar South Pole terrain within the nine regions is a mosaic of LRO (Lunar Reconnaissance Orbiter) WAC (Wide Angle Camera) images.
This image shows nine candidate landing regions for NASA’s Artemis III mission, with each region containing multiple potential sites for the first crewed landing on the moon in more than 50 years.  NASA

When choosing a landing site, NASA tries to find a balance between areas that are scientifically interesting and those that are safe and easier to land on. The site selectors also need to consider practicalities such as communications with Earth and what launch windows would be required to reach a site.

“Artemis III will be the first time that astronauts will land in the south polar region of the moon. They will be flying on a new lander into a terrain that is unique from our past Apollo experience,” said Jacob Bleacher, NASA’s chief exploration scientist. “Finding the right locations for this historic moment begins with identifying safe places for this first landing, and then trying to match that with opportunities for science from this new place on the moon.”

The location of water ice is particularly important for two reasons: firstly, as an object of scientific study, but also as a resource for lunar explorers. NASA has plans for long-term visits to the moon, counted in weeks or months rather than the days that have been the norm in the past, and this requires considerable resources to keep astronauts healthy. If the early missions can identify resources like available water ice, it could help sustain longer missions in the future.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
A NASA Mars rover has a giant hole in one of its wheels
A damaged wheel on NASA's Mars Curiosity rover.

 

If the tire on your car fails, it’s either a case of changing it yourself or getting someone to do it for you. For rovers on Mars, neither option is available.

Read more
China plans to use this spacesuit for its first crewed moon landing
China's spacesuit for its first lunar landing.

China Unveils Moon-Landing Spacesuit for First Time

China is aiming to put its first citizens on the moon by 2030, and it’s just unveiled the newly designed spacesuit they’ll be wearing when they perform the historic feat.

Read more
See the stunning Rosette Nebula in all its glorious colors
Rosette Nebula Captured with DECam

This gorgeous image shows a fiery stunner called the Rosette Nebula that's located 5,000 light-years away from Earth. Imaged by the Dark Energy Camera (DECam) instrument on the Víctor M. Blanco 4-meter Telescope in Chile, this cloud of dust and gas acts as a stellar nursery and houses a young star cluster at its center.

Unlike other telescopes, such as the James Webb Space Telescope, which looks in the infrared wavelength, the DECam looks in the optical wavelength, so it sees similar colors to what the human eye would perceive. The colors in this image are so bright and vivid due to the starlight from the massive young stars in the cluster, which give off large amounts of ultraviolet radiation, thereby ionizing nearby hydrogen gas. The ionized gas glows brightly, giving the nebular its striking appearance.

Read more