cua cà mau cua tươi sống cua cà mau bao nhiêu 1kg giá cua hôm nay giá cua cà mau hôm nay cua thịt cà mau cua biển cua biển cà mau cách luộc cua cà mau cua gạch cua gạch cà mau vựa cua cà mau lẩu cua cà mau giá cua thịt cà mau hôm nay giá cua gạch cà mau giá cua gạch cách hấp cua cà mau cua cốm cà mau cua hấp mua cua cà mau cua ca mau ban cua ca mau cua cà mau giá rẻ cua biển tươi cuaganic cua cua thịt cà mau cua gạch cà mau cua cà mau gần đây hải sản cà mau cua gạch son cua đầy gạch giá rẻ các loại cua ở việt nam các loại cua biển ở việt nam cua ngon cua giá rẻ cua gia re crab farming crab farming cua cà mau cua cà mau cua tươi sống cua tươi sống cua cà mau bao nhiêu 1kg giá cua hôm nay giá cua cà mau hôm nay cua thịt cà mau cua biển cua biển cà mau cách luộc cua cà mau cua gạch cua gạch cà mau vựa cua cà mau lẩu cua cà mau giá cua thịt cà mau hôm nay giá cua gạch cà mau giá cua gạch cách hấp cua cà mau cua cốm cà mau cua hấp mua cua cà mau cua ca mau ban cua ca mau cua cà mau giá rẻ cua biển tươi cuaganic cua cua thịt cà mau cua gạch cà mau cua cà mau gần đây hải sản cà mau cua gạch son cua đầy gạch giá rẻ các loại cua ở việt nam các loại cua biển ở việt nam cua ngon cua giá rẻ cua gia re crab farming crab farming cua cà mau
Skip to main content

Perseverance rover experiment produces record amount of oxygen on Mars

Inside the belly of the Perseverance rover, currently exploring Mars’s Jezero Crater, is a small box with a big job. The Mars Oxygen In Situ Resource Utilization Experiment or MOXIE aims to produce oxygen from Mars’s abundant carbon dioxide, paving the way for providing resources for future crewed missions to the Red Planet.

In the summer of this year, MOXIE tested out its fastest production of oxygen to date, making more than 10 grams of oxygen per hour. The device works by taking in carbon dioxide from the atmosphere, using some electricity, and turning it into oxygen and carbon monoxide. The carbon monoxide can be released and the oxygen kept — making the system like a fuel cell run in reverse.

In this image, the gold-plated Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) Instrument shines after being installed inside the Perseverance rover.
In this image, the gold-plated Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) Instrument shines after being installed inside the Perseverance rover. NASA/JPL-Caltech

Just recently, MOXIE was run again and managed to surpass its previous milestone. In August this year, it produced a peak of 10.44 grams of oxygen per hour, and on November 28 it produced 10.56 grams per hour at peak. While that isn’t a lot of oxygen for most uses, it does demonstrate that MOXIE works on a small scale — and it could be scaled up to be much bigger and more efficient.

Recommended Videos

The idea is that a larger version of the device could be used for future crewed missions. The big concern isn’t making oxygen for astronauts to breathe, though that is obviously important too, rather it is making enough to use as an oxidizer for fuel for a rocket to take off from Mars. That requires large amounts of oxygen, which a system like this could be able to produce. According to NASA, such a larger-scale system could work 200 times faster than MOXIE and could produce oxygen for over a year.

“Eight years have passed since I began working on MOXIE as a graduate student at MIT,” writes MOXIE science team member Forrest Meyen about the recent run. “Over that time, I have grown with the project and dedicated my career to discovering and utilizing space resources. I’ve taken this moment to rejoice and reflect on the perseverance required to create foundational technologies for our next leap into the cosmos.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Perseverance rover gears up for a big climb to the rim of the Jezero Crater
One of the navigation cameras aboard NASA’s Perseverance Mars rover captured this view looking back at the “Bright Angel” area on July 30, the 1,224th Martian day, or sol, of the mission.

The Perseverance rover on Mars is set to begin its newest challenge: a slog up the rim of the Jezero Crater that will take months to complete. The rover will face steep slopes and difficult terrain, testing its wheels and suspension system, but its efforts should help to uncover rocks from the most ancient part of the Mars crust.

Since the rover landed in the Jezero Crater in 2021, it has been exploring the floor of the crater and the site of an ancient river delta. This area was chosen because it was once home to an ancient lake, so the rock cores that the rover has collected will help to uncover information about the history of water on Mars -- which is vital to determine if the planet could ever have been habitable.

Read more
Mars has ‘oceans’ worth’ of water – but it’s deep underground
More than 3 billion years ago, Mars was warm, wet, and had an atmosphere that could have supported life. This artist's rendering shows what the planet may have looked like with global oceans based on today's topography.

One of the key issues for getting humans to Mars is finding a way to get them water. Scientists know that millions of years ago, Mars was covered in oceans, but the planet lost its water over time and now has virtually no liquid water on its surface. Now, though, researchers have identified what they believe could be oceans' worth of water on Mars. There's just one snag: it's deep underground.

The research used data from NASA's now-retired InSight lander, which used a seismometer and other instruments to investigate the planet's interior. They found evidence of what appears to be a large underground reservoir of water, enough to cover the entire planet in about a mile of ocean. But it's inaccessible, being located between 7 to 13 miles beneath the planet's surface. The water is located in between cracks in a portion of the interior called the mid-crust, which sits beneath the dry upper crust that is drillable from the surface.

Read more
Relive Mars rover’s ‘7 minutes of terror’ during landing 12 years ago
An animation showing the Curiosity spacecraft heading toward Mars.

At 1:31 a.m. ET on August 6, 2012, NASA’s Curiosity rover made a spectacular landing on the surface of Mars.

To mark the 12th anniversary, NASA has shared a video (below) in which members of the Curiosity team talk about how they achieved the remarkable feat, paying particular attention to the so-called “seven minutes of terror” during the final moments of descent.

Read more